Julie Talbot
- Directrice de département
-
Faculté des arts et des sciences - Département de géographie
Complexe des sciences local B-2021
- Professeure agrégée
-
Faculté des arts et des sciences - Département de géographie
Complexe des sciences local B-6417
Web : ResearchGate
Web : Site web de l’unité de recherche
Web : LinkedIn
Web : Autre site web
Biographie
Professeure au département de géographie de l'UdeM depuis 2012. Auparavant, elle réalise un post-doctorat à l'Université du New Hampshire et un doctorat à l'Université McGill. Ses recherches se concentrent sur les impacts des activités humaines sur le fonctionnement des écosystèmes naturels, en particulier des milieux humides. Julie Talbot a aussi un intérêt envers la quantification des impacts environnementaux des activités des universités et de la recherche, en particulier la mobilité académique.
Affiliations
- Membre – GRIL — Groupe de recherche interuniversitaire en Limnologie
- Membre – CSBQ — Centre de la science de la biodiversité du Québec
Programmes d’enseignement
- Baccalauréat en géographie environnementale – Sciences pures et sciences appliquées Environnement et développement durable Sciences humaines
- Majeure en géographie – Sciences humaines Sciences pures et sciences appliquées Environnement et développement durable
- Maîtrise en géographie – Environnement et développement durable Sciences humaines Sciences pures et sciences appliquées
Cours donnés
- GEO2112 Biogéographie
- GEO6032 Projet de maîtrise de recherche 2
Expertises
- Biogéochimie
- Changements climatiques
- Milieux humides
- Nutriments
- Services écosystémiques
- Modélisation
- Biogéographie
- Paléoécologie
- Temps géologiques
Mon laboratoire se spécialise dans l’étude de la stabilité à long terme des écosystèmes. Plus spécifiquement, nous cherchons à comprendre les facteurs de stabilité et d’instabilité des fonctions et services écosystémiques des milieux humides et aquatiques dans un contexte de changements environnementaux. Nous nous intéressons à la fois aux changements à long terme (siècles –millénaires) et aux changements à moyen terme (années – décennies). Pour ce faire, nous utilisons diverses techniques, incluant la micropaléontologie, les mesures biogéochimiques, les inventaires végétaux et la modélisation.
Un autre axe de nos recherches couvre les impacts environnementaux des activités de recherche scientifique. Nous nous intéressons ainsi aux concepts d'empreinte carbone et d'empreinte azote, appliqués aux institutions.
Encadrement Tout déplier Tout replier
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Doctorat
Diplôme obtenu : Ph. D.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Cycle : Maîtrise
Diplôme obtenu : M. Sc.
Projets de recherche Tout déplier Tout replier
Groupe de Recherche Interuniversitaire en Limnologie Projet de recherche au Canada / 2024 - 2031
The biogeochemical heterogeneity of peatlands Projet de recherche au Canada / 2020 - 2030
Cloud to Aquifer Natural Observatories (CANO) - Exploring the changing watercycle in Eastern Canada Projet de recherche au Canada / 2024 - 2028
Archéologie et environnement du bassin versant du fleuve Saint-Laurent Projet de recherche au Canada / 2022 - 2027
(Dés)information et plateformes numériques au Québec. Comprendre les usages informationnels du jeune public au secondaire et collégial. Projet de recherche au Canada / 2023 - 2026
The carbon cycling of eastern Quebec boreal forests in the context of climate change and hydropower production Projet de recherche au Canada / 2021 - 2026
The carbon cycling of eastern Quebec boreal forests in the context of climate change and hydropower production Projet de recherche au Canada / 2021 - 2026
Éruptions volcaniques violentes : mécanismes, dispersion des cendres et leur usage comme marqueur de temps dans les tourbières du Québec Projet de recherche au Canada / 2024 - 2025
Dynamique du carbone forestier du territoire et des produits du bois au Québec Projet de recherche au Canada / 2023 - 2025
The changing boreal carbon cycle and the land-water-sediment interfaces Projet de recherche au Canada / 2020 - 2025
Dynamique du carbone forestier du territoire et des produits du bois au Québec Projet de recherche au Canada / 2022 - 2024
The changing boreal carbon cycle at the land-water-sediment interfaces Projet de recherche au Canada / 2020 - 2024
Mineral Dust Dynamics and Climate Change at High Latitude Mountainous Regions Projet de recherche au Canada / 2019 - 2024
La poussière minérale est intéressante pour son rôle d'aérosol et d'agent influençant les cycles biogéochimiques. Les émissions de poussières dans des endroits de haute latitude comme le A'ą̈y Chù (sud-ouest du Yukon) ont reçu peu d'observations systématiques. Ce projet vise à explorer à la fois les forces motrices et la dynamique des tempêtes de poussière afin de mieux comprendre comment ces régions diffèrent de leurs équivalents à basse latitude. Mes travaux se concentrent en particulier sur les nombreux phénomènes météorologiques présents dans les régions montagneuses et sur la manière dont ils interagissent pour produire des tempêtes de poussière.
Dynamique forestière contemporaine et passée des érablières nordiques Projet de recherche au Canada / 2020 - 2023
Mineral Dust Dynamics and Climate Change at High Latitude Mountainous Regions Projet de recherche au Canada / 2019 - 2023
MODELLING ENVIRONMENTAL CHANGE ON PAST ACCUMULATION IN NORTHERN PEATLANDS Projet de recherche au Canada / 2014 - 2022
Supplément COVID-19 CRSNG_The biogeochemical heterogeneity of peatlands Projet de recherche au Canada / 2020 - 2021
Centre de la Science de la Biodiversité du Québec (CSBQ) / Etude des liens existant entre la diversité végétale et les fonctions biogéochimiques des écotones tourbière-forêt Projet de recherche au Canada / 2017 - 2020
RéseauLab: a novel social-ecological innovation system for transformative change towards sustainability Projet de recherche au Canada / 2018 - 2019
Variabilité spatiale de l'accumulation du carbone dans une tourbière ombrotrophe Projet de recherche au Canada / 2015 - 2019
Past, present and future changes in Northern peatland ecology, hydrology and carbon cycling: paleoecological reconstruction and modeling. Projet de recherche au Canada / 2015 - 2019
LA TOURBIERE FOLLY : CARACTERISATION DE SES ROLES COMME HABITAT ET ARCHIVE PALEO-ENVIRONNEMENTALE Projet de recherche au Canada / 2014 - 2015
LA TOURBIERE FOLLY : CARACTERISATION DE SES ROLES COMME HABITAT ET ARCHIVE PALEO-ENVIRONNEMENTALE Projet de recherche au Canada / 2014 - 2015
PAST, PRESENT AND FUTURE CHANGES IN NORTHERN PEATLAND ECOLOGY, HYDROLOGY AND CARBON CYCLING : PALEOECOLOGICAL RECONSTRUCTIONS AND MODELLING Projet de recherche au Canada / 2012 - 2014
Publications Tout déplier Tout replier
-
*Pouillé S, Talbot J, *Tamalavage A, *Kessler-Nadeau M-É, King J. 2024. Impacts of mineral dust on trace element concentrations (As, Cd, Cu, Ni and Pb) in lichens and soils at Lhù'ààn Mân' (Yukon Territory, Canada). Journal of Geophysical Research – Biogeosciences 129: e2023JG007927. https://doi.org/10.1029/2023JG007927
-
*Li X, Talbot J, King J, Wang M. 2023. Effects of road dust on vegetation composition and surface chemistry of three ombrotrophic peatlands in eastern Canada. Geoderma 439:116665.
-
Frésard A, Mulot M, Bertrand G, Lhosmot A, Gandois L, Tuittila E-S, Loisel J, Talbot J, Saarnio S, Männistö E, Pelletier L, Garneau M, Mitchell E. 2023. Inferring northern peatland methane emissions from testate amoebae: A proof of concept study. Mires and Peat 29: 20.
-
*Arsenault J, Talbot J, Brown LE, Helbig M, Holden J, Hoyos-Santillan J, *Jolin É, MacKenzie R, Martinez-Cruz K, Sepulveda-Jauregui A, Lapierre J-F. 2023. Climate-driven spatial and temporal patterns in peatland pool biogeochemistry. Global Change Biology 29: 4056-4068.
-
*Mutonkole PM, Talbot J, Bonneville S. 2023. Tropical peat deposits undergoing land-use change: the case of Buhandanda and Lushala peatlands (Democratic Republic of Congo). Mires and Peat 29: 09.
-
*Hassan M*, Talbot J, *Arsenault J, Martinez-Cruz K, Sepulveda-Jauregui A, Hoyos-Santillan J, Lapierre J-F. 2023. Linking dissolved organic matter to CO2 and CH4 concentrations in Canadian and Chilean peatland pools. Global biogeochemical cycles: e2023GB007715.
-
*Arsenault J, Talbot J, Brown LE, Holden J, Martinez-Cruz K, Sepulveda-Jauregui A, Swindles GT, Wauthy M, Lapierre J-F. 2022. Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies and lakes. Geophysical Research Letters: e2021GL097492.
-
Zhang H, Väliranta M, Swindles GT, Aquino-López MA, Mullan D, Tan N, Amesbury M, Babeshko KV, Bao K, Bobrov A, Chernyshov V, Davies MA, Diaconu A-C, Feurdean A, Finkelstein SA, Garneau M, Guo Z, Jones MC, Kay M, Klein ES, Lamentowicz M, Magnan G, Marcisz K, Mazei N, Mazei Y, Payne R, *Pelletier N, Piilo SR, Pratte S, Roland T, Saldaev D, Shotyk W, Sim TG, Sloan TJ, Słowiński M, Talbot J, Taylor L, Tsyganov A, van Bellen S, Wetterich S, Xing W, Zhao Y. 2022. Recent climate change has driven divergent hydrological shifts in high-latitude peatlands. Nature Communications 13 : 4959.
-
Dimitrov D, Lafleur P, Sonnentag O, Talbot J. Quinton W. 2022. Hydrology of peat estimated from near-surface water contents. Hydrological Sciences Journal 67: 1702-1721.
-
Davidson S, Daze E, Byun E, Hiler D, Kangur M, Talbot J, Finkelstein S, Strack M. 2022. The unrecognized importance of carbon stocks and fluxes from Swamps in Canada and the USA. Environmental Research Letters 17: 053003.
-
Serk H, Nilsson M, Bohlin E, Ehlers I, Wieloch T, Olid C, Grover S, Kalbitz K, Limpens J, Moore T, Münchberger W, Talbot J, Wang X, Knorr K-H, Pancotta V, Schleucher J. 2021. Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the 20th century. Scientific Reports 11: 24517.
-
Pellerin S, Lavoie M, Talbot J. 2021. Rapid broadleave encroachment in a temperate bog induces species richness increase and compositional turnover. Ecoscience 28: 283-300.
-
Loisel J, Gallego-Sala A, Amesbury MJ, Magnan G, Anshari G, Beilman DW, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, Yu Z, Bubier JL, Garneau M, Moore T, Sannel ABK, Page S, Väliranta M, Bechtold M, Brovkin V, Cole LES, Chanton JP, Christensen TR, Davies MA, De Vleeschouwer F, Finkelstein SA, Frolking S, Galka M, Gandois L, Girkin N, Harris LI, Heinemeyer A, Hoyt AM, Jones MC, Joos F, Juutinen K, Lacourse T, Lamentowicz M, Larmola T, Leifeld J, Lohila A, Milner AM, Minkkinen K, Moss P, Naafs BDA, Nichols J, O'Donnell J, Payne R, Philben M, Piilo S, Quillet A, Ratmayake AS, Roland TP, Sjögersten S, Sonnentag O, Swindles GT, Swinnen W, Talbot J, Treat C, Valach AC, Wu J. 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change 11: 1-8.
-
De Vleeschouwer F, Baron S, Cloy JM, Enrico M, Ettler V, Fagel N, Kempter H, Kylander M, Li C, Longman J, Martinez-Cortizas A, Marx S, Mattielli N, Mighall T, Nieminen TM, Piotrowska N, Pontevedra-Pombal X, Pratte S, Renson V, Shotyk W, Shuttleworth E, Sikorski J, Stromsoe N, Talbot J, von Scheffer C, Weiss D, Zaccone C, Le Roux G. 2020. Comment on: “A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: Priority pollutants (Pb, Cd, Hg)”. Science of the Total Environment 737: 138699.
-
Heffernan L, Estop-Aragonés C, Knorr KH, Talbot J, Olefeldt D. 2020. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. Journal of Geophysical Research – Biogeosciences 125: 005501.
-
MacDonald G, Talbot J, Moore T, *Arsenault J, McCourt S, Goertzen A, *Kessler-Nadeau MÉ, Manaugh K, Maranger R, Robinson BE. 2020. Geographic versus institutional drivers of nitrogen footprints: a comparison of two urban universities. Environmental Research Letters 15: 045008.
-
*Arsenault J, Talbot J, Boustani L, Gonzalès R, Manaugh K. 2019. The environmental footprint of academic and student mobility in a large research-oriented university. Environmental Research Letters 14: 095001.
-
Treat C, Kleinen T, Broothaerts N, Dalton AS, Dommain R, Douglas T, Drexler J, Finkelstein SA, Grosse G, Hope GS, Hutchings J, Jones MC, Kuhry P, Lacourse T, Lähteenoja O, Loisel J, Notebaert B, Payne R, Peteet DM, Sannel ABK, Stelling J, Strauss J, Swindles GT, Talbot J, Tarnocai C, Verstraeten G, Williams CJ, Xia Z, Yu Z, Väliranta M, Hattestrand M, Alexanderson H, Brovkin V. 2019. Widespread global peatland establishment and persistence over the last 130,000 years. Proceedings of the National Academy of Sciences 116: 4822-4827.
-
*Arsenault J, Talbot J, Moore T, Beauvais MP, Franssen J, Roulet N. 2019. The Spatial Heterogeneity of Vegetation, Hydrology and Water Chemistry in a Peatland with Open-Water Pools. Ecosystems. 22: 1352-1367.
-
Moore T, Large D, Talbot J, Wang M, Riley J. 2018. The stoichiometry of carbon, hydrogen and oxygen in peat. Journal of Geophysical Research - Biogeosciences 123: 3101-3110.
-
Amesbury M, Booth R, Roland T, Bunbury J, Clifford M, Charman D, Elliot S, Finkelstein S, Garneau M, Hughes P, Lamarre A, Loisel J, Mackay H, Magnan G, Markel E, Mitchell E, Payne R, *Pelletier N, Roe H, Sullivan M, Swindles G, Talbot J, van Bellen S, Warner B. 2018. Towards a Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale paleohydrological transfer function for North America and comparison to European data. Quaternary Science Reviews 201: 481-500.
-
*Arsenault J, Talbot J, Moore T. 2018. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment. 631-632: 714-722.
-
Blarquez O, Talbot J, *Paillard J, *Lapointe-Elmrabti L, *Pelletier N, Gates St-Pierre C. 2018. Late Holocene influence of societies on the fire regime in southern Québec temperate forests. Quaternary Science Reviews 180: 63-74.
-
Wang M, Talbot J, Moore T. 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment 621: 1255-1263.
-
Talbot J, Moore TR, Wang M, Ouellet Dallaire C, Riley JL. 2017. Distribution of lead and mercury in Ontario peatlands. Environmental Pollution 231: 890-898.
-
*Lapointe-Elmrabti L, Talbot J, Fortier D, Fréchette B, Strauss J, Kanevskiy M, Shur Y. 2017. Middle to late Wisconsinan climate and ecological changes in northern Alaska: the Itkillik River Yedoma. Palaeogeography, Palaeoclimatology, Palaeoecology 485: 906-916.
-
*Pelletier N, Talbot J, Olefeldt D, Turetsky M, Blodau C, Sonnentag O, Quinton WL. 2017. Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada. . The Holocene 27: 1391-1405.
-
Loisel J, van Bellen S, Pelletier L, Talbot J, Hugelius G, Holmquist J, Nichols J, Karran D, Yu Z. 2017. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Science Reviews 165: 59-80.
-
Treat CC, Jones MC, Camill P, Garneau M, Gallego-Sala A, Harden JW, Hugelius G, Klein ES, Kokfelt U, Kuhry P, Loisel J, Mathijssen PJH, O’Donnell JA, Oksanen PO, Ronkainen TM, Sannel ABK, Talbot J, Tarnocai CM, Väliranta M. 2016. Effects of permafrost aggradation on peat properties as determined from a pan-arctic macrofossil synthesis. Journal of Geophysical Research – Biogeosciences 121: 78-94.
-
Wang M, Moore TR, Talbot J, Riley JL. 2015. The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles 29: 113-121.
-
Kurnianto S, Warren M, Talbot J, Kaufmann B, Murdiyarso D, Frolking S. 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology 21: 431-444.
-
Talbot J, Roulet NT, Sonnentag O, Moore T. 2014. Increases in aboveground biomass and leaf area 85 years after drainage in a bog. Botany 92: 713-721.
-
Frolking S, Talbot J, Subin ZM. 2014 Exploring the relationship between peatland net carbon balance and apparent carbon accumulation rate at century to millennial time scales. The Holocene 24: 1167-1173.
-
Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S. 2014. CO2 and CH4 production is a function of temperature and peat type but not thermal state in Alaskan permafrost peats. Global Change Biology 20: 2674-2686.
-
Wang M, Moore T, Talbot J, Richard PJH. 2014. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environmental Research Letters 9: 024003.
-
Kopp BJ, Fleckenstein JH, Roulet NT, Humphreys E, Talbot J, Blodau C. 2013. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada. Hydrology and Earth System Sciences 17: 3485-3498.
-
Quillet A, Frolking S, Garneau M, Talbot J, Peng C. 2013. Assessing the role of parameter interactions in the sensitivity analysis of a model of peatland dynamics. Ecological Modeling 248: 30-40.
-
Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S. 2012 The resiliency and functional role of moss in boreal and arctic ecosystems (Tansley Review). New Phytologist 196: 49-67.
-
Frolking S, Talbot J, Jones M, Treat C, Kauffman B, Tuittila E-S, Roulet NT. 2011. Peatlands in the Earth’s 21stcentury climate system. Environmental Reviews 19:371-396.
-
Wisser D, Marchenko S, Talbot J, Treat C, Frolking S. 2011. Soil temperature response to 21stcentury global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America. Earth System Dynamics 2:121-138.
-
Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH. 2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics 1: 115-167.
-
Talbot J, Richard PJH, Roulet NT, Booth RK. 2010. Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. Journal of Vegetation Science 21: 143-156.
-
Sonnentag O, Talbot J, Chen JM, Roulet NT. 2007. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agricultural and Forest Meteorology 114: 200-212.
-
Sonnentag O, Chen JM, Roberts DA, Talbot J, Halligan KQ, Govind A.2007. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sensing of Environment 109: 342-360.
-
Talbot J, Plamondon AP, Lévesque D, Aubé D, Prévost M, Chazalmartin F, Gnocchini M. 2006. Relating snow dynamics and stand characteristics of harvested balsam fir stands, Montmorency Forest, Quebec. Hydrological Processes 20: 1187-1199.
*Pouillé S, Talbot J, *Tamalavage A, *Kessler-Nadeau M-É, King J. 2024. Impacts of mineral dust on trace element concentrations (As, Cd, Cu, Ni and Pb) in lichens and soils at Lhù'ààn Mân' (Yukon Territory, Canada). Journal of Geophysical Research – Biogeosciences 129: e2023JG007927. https://doi.org/10.1029/2023JG007927
*Li X, Talbot J, King J, Wang M. 2023. Effects of road dust on vegetation composition and surface chemistry of three ombrotrophic peatlands in eastern Canada. Geoderma 439:116665.
Frésard A, Mulot M, Bertrand G, Lhosmot A, Gandois L, Tuittila E-S, Loisel J, Talbot J, Saarnio S, Männistö E, Pelletier L, Garneau M, Mitchell E. 2023. Inferring northern peatland methane emissions from testate amoebae: A proof of concept study. Mires and Peat 29: 20.
*Arsenault J, Talbot J, Brown LE, Helbig M, Holden J, Hoyos-Santillan J, *Jolin É, MacKenzie R, Martinez-Cruz K, Sepulveda-Jauregui A, Lapierre J-F. 2023. Climate-driven spatial and temporal patterns in peatland pool biogeochemistry. Global Change Biology 29: 4056-4068.
*Mutonkole PM, Talbot J, Bonneville S. 2023. Tropical peat deposits undergoing land-use change: the case of Buhandanda and Lushala peatlands (Democratic Republic of Congo). Mires and Peat 29: 09.
*Hassan M*, Talbot J, *Arsenault J, Martinez-Cruz K, Sepulveda-Jauregui A, Hoyos-Santillan J, Lapierre J-F. 2023. Linking dissolved organic matter to CO2 and CH4 concentrations in Canadian and Chilean peatland pools. Global biogeochemical cycles: e2023GB007715.
*Arsenault J, Talbot J, Brown LE, Holden J, Martinez-Cruz K, Sepulveda-Jauregui A, Swindles GT, Wauthy M, Lapierre J-F. 2022. Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies and lakes. Geophysical Research Letters: e2021GL097492.
Zhang H, Väliranta M, Swindles GT, Aquino-López MA, Mullan D, Tan N, Amesbury M, Babeshko KV, Bao K, Bobrov A, Chernyshov V, Davies MA, Diaconu A-C, Feurdean A, Finkelstein SA, Garneau M, Guo Z, Jones MC, Kay M, Klein ES, Lamentowicz M, Magnan G, Marcisz K, Mazei N, Mazei Y, Payne R, *Pelletier N, Piilo SR, Pratte S, Roland T, Saldaev D, Shotyk W, Sim TG, Sloan TJ, Słowiński M, Talbot J, Taylor L, Tsyganov A, van Bellen S, Wetterich S, Xing W, Zhao Y. 2022. Recent climate change has driven divergent hydrological shifts in high-latitude peatlands. Nature Communications 13 : 4959.
Dimitrov D, Lafleur P, Sonnentag O, Talbot J. Quinton W. 2022. Hydrology of peat estimated from near-surface water contents. Hydrological Sciences Journal 67: 1702-1721.
Davidson S, Daze E, Byun E, Hiler D, Kangur M, Talbot J, Finkelstein S, Strack M. 2022. The unrecognized importance of carbon stocks and fluxes from Swamps in Canada and the USA. Environmental Research Letters 17: 053003.
Serk H, Nilsson M, Bohlin E, Ehlers I, Wieloch T, Olid C, Grover S, Kalbitz K, Limpens J, Moore T, Münchberger W, Talbot J, Wang X, Knorr K-H, Pancotta V, Schleucher J. 2021. Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the 20th century. Scientific Reports 11: 24517.
Pellerin S, Lavoie M, Talbot J. 2021. Rapid broadleave encroachment in a temperate bog induces species richness increase and compositional turnover. Ecoscience 28: 283-300.
Loisel J, Gallego-Sala A, Amesbury MJ, Magnan G, Anshari G, Beilman DW, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, Yu Z, Bubier JL, Garneau M, Moore T, Sannel ABK, Page S, Väliranta M, Bechtold M, Brovkin V, Cole LES, Chanton JP, Christensen TR, Davies MA, De Vleeschouwer F, Finkelstein SA, Frolking S, Galka M, Gandois L, Girkin N, Harris LI, Heinemeyer A, Hoyt AM, Jones MC, Joos F, Juutinen K, Lacourse T, Lamentowicz M, Larmola T, Leifeld J, Lohila A, Milner AM, Minkkinen K, Moss P, Naafs BDA, Nichols J, O'Donnell J, Payne R, Philben M, Piilo S, Quillet A, Ratmayake AS, Roland TP, Sjögersten S, Sonnentag O, Swindles GT, Swinnen W, Talbot J, Treat C, Valach AC, Wu J. 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change 11: 1-8.
De Vleeschouwer F, Baron S, Cloy JM, Enrico M, Ettler V, Fagel N, Kempter H, Kylander M, Li C, Longman J, Martinez-Cortizas A, Marx S, Mattielli N, Mighall T, Nieminen TM, Piotrowska N, Pontevedra-Pombal X, Pratte S, Renson V, Shotyk W, Shuttleworth E, Sikorski J, Stromsoe N, Talbot J, von Scheffer C, Weiss D, Zaccone C, Le Roux G. 2020. Comment on: “A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: Priority pollutants (Pb, Cd, Hg)”. Science of the Total Environment 737: 138699.
Heffernan L, Estop-Aragonés C, Knorr KH, Talbot J, Olefeldt D. 2020. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. Journal of Geophysical Research – Biogeosciences 125: 005501.
MacDonald G, Talbot J, Moore T, *Arsenault J, McCourt S, Goertzen A, *Kessler-Nadeau MÉ, Manaugh K, Maranger R, Robinson BE. 2020. Geographic versus institutional drivers of nitrogen footprints: a comparison of two urban universities. Environmental Research Letters 15: 045008.
*Arsenault J, Talbot J, Boustani L, Gonzalès R, Manaugh K. 2019. The environmental footprint of academic and student mobility in a large research-oriented university. Environmental Research Letters 14: 095001.
Treat C, Kleinen T, Broothaerts N, Dalton AS, Dommain R, Douglas T, Drexler J, Finkelstein SA, Grosse G, Hope GS, Hutchings J, Jones MC, Kuhry P, Lacourse T, Lähteenoja O, Loisel J, Notebaert B, Payne R, Peteet DM, Sannel ABK, Stelling J, Strauss J, Swindles GT, Talbot J, Tarnocai C, Verstraeten G, Williams CJ, Xia Z, Yu Z, Väliranta M, Hattestrand M, Alexanderson H, Brovkin V. 2019. Widespread global peatland establishment and persistence over the last 130,000 years. Proceedings of the National Academy of Sciences 116: 4822-4827.
*Arsenault J, Talbot J, Moore T, Beauvais MP, Franssen J, Roulet N. 2019. The Spatial Heterogeneity of Vegetation, Hydrology and Water Chemistry in a Peatland with Open-Water Pools. Ecosystems. 22: 1352-1367.
Moore T, Large D, Talbot J, Wang M, Riley J. 2018. The stoichiometry of carbon, hydrogen and oxygen in peat. Journal of Geophysical Research - Biogeosciences 123: 3101-3110.
Amesbury M, Booth R, Roland T, Bunbury J, Clifford M, Charman D, Elliot S, Finkelstein S, Garneau M, Hughes P, Lamarre A, Loisel J, Mackay H, Magnan G, Markel E, Mitchell E, Payne R, *Pelletier N, Roe H, Sullivan M, Swindles G, Talbot J, van Bellen S, Warner B. 2018. Towards a Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale paleohydrological transfer function for North America and comparison to European data. Quaternary Science Reviews 201: 481-500.
*Arsenault J, Talbot J, Moore T. 2018. Environmental controls of C, N and P biogeochemistry in peatland pools. Science of the Total Environment. 631-632: 714-722.
Blarquez O, Talbot J, *Paillard J, *Lapointe-Elmrabti L, *Pelletier N, Gates St-Pierre C. 2018. Late Holocene influence of societies on the fire regime in southern Québec temperate forests. Quaternary Science Reviews 180: 63-74.
Wang M, Talbot J, Moore T. 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Science of the Total Environment 621: 1255-1263.
Talbot J, Moore TR, Wang M, Ouellet Dallaire C, Riley JL. 2017. Distribution of lead and mercury in Ontario peatlands. Environmental Pollution 231: 890-898.
*Lapointe-Elmrabti L, Talbot J, Fortier D, Fréchette B, Strauss J, Kanevskiy M, Shur Y. 2017. Middle to late Wisconsinan climate and ecological changes in northern Alaska: the Itkillik River Yedoma. Palaeogeography, Palaeoclimatology, Palaeoecology 485: 906-916.
*Pelletier N, Talbot J, Olefeldt D, Turetsky M, Blodau C, Sonnentag O, Quinton WL. 2017. Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada. . The Holocene 27: 1391-1405.
Loisel J, van Bellen S, Pelletier L, Talbot J, Hugelius G, Holmquist J, Nichols J, Karran D, Yu Z. 2017. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Science Reviews 165: 59-80.
Treat CC, Jones MC, Camill P, Garneau M, Gallego-Sala A, Harden JW, Hugelius G, Klein ES, Kokfelt U, Kuhry P, Loisel J, Mathijssen PJH, O’Donnell JA, Oksanen PO, Ronkainen TM, Sannel ABK, Talbot J, Tarnocai CM, Väliranta M. 2016. Effects of permafrost aggradation on peat properties as determined from a pan-arctic macrofossil synthesis. Journal of Geophysical Research – Biogeosciences 121: 78-94.
Wang M, Moore TR, Talbot J, Riley JL. 2015. The stoichiometry of carbon and nutrients in peat formation. Global Biogeochemical Cycles 29: 113-121.
Kurnianto S, Warren M, Talbot J, Kaufmann B, Murdiyarso D, Frolking S. 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology 21: 431-444.
Talbot J, Roulet NT, Sonnentag O, Moore T. 2014. Increases in aboveground biomass and leaf area 85 years after drainage in a bog. Botany 92: 713-721.
Frolking S, Talbot J, Subin ZM. 2014 Exploring the relationship between peatland net carbon balance and apparent carbon accumulation rate at century to millennial time scales. The Holocene 24: 1167-1173.
Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S. 2014. CO2 and CH4 production is a function of temperature and peat type but not thermal state in Alaskan permafrost peats. Global Change Biology 20: 2674-2686.
Wang M, Moore T, Talbot J, Richard PJH. 2014. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environmental Research Letters 9: 024003.
Kopp BJ, Fleckenstein JH, Roulet NT, Humphreys E, Talbot J, Blodau C. 2013. Impact of long-term drainage on summer groundwater flow patterns in the Mer Bleue peatland, Ontario, Canada. Hydrology and Earth System Sciences 17: 3485-3498.
Quillet A, Frolking S, Garneau M, Talbot J, Peng C. 2013. Assessing the role of parameter interactions in the sensitivity analysis of a model of peatland dynamics. Ecological Modeling 248: 30-40.
Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S. 2012 The resiliency and functional role of moss in boreal and arctic ecosystems (Tansley Review). New Phytologist 196: 49-67.
Frolking S, Talbot J, Jones M, Treat C, Kauffman B, Tuittila E-S, Roulet NT. 2011. Peatlands in the Earth’s 21stcentury climate system. Environmental Reviews 19:371-396.
Wisser D, Marchenko S, Talbot J, Treat C, Frolking S. 2011. Soil temperature response to 21stcentury global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America. Earth System Dynamics 2:121-138.
Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH. 2010. A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics 1: 115-167.
Talbot J, Richard PJH, Roulet NT, Booth RK. 2010. Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. Journal of Vegetation Science 21: 143-156.
Sonnentag O, Talbot J, Chen JM, Roulet NT. 2007. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland. Agricultural and Forest Meteorology 114: 200-212.
Sonnentag O, Chen JM, Roberts DA, Talbot J, Halligan KQ, Govind A.2007. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sensing of Environment 109: 342-360.
Talbot J, Plamondon AP, Lévesque D, Aubé D, Prévost M, Chazalmartin F, Gnocchini M. 2006. Relating snow dynamics and stand characteristics of harvested balsam fir stands, Montmorency Forest, Quebec. Hydrological Processes 20: 1187-1199.
Prix et distinctions
-
- Prix d’excellence en enseignement - Catégorie professeurs - 2018
Informations supplémentaires
Médias
Nouvelles
- Quand les tourbières restaurées retrouvent (presque) leur équilibre naturel
- Se mobiliser pour apaiser l’écoanxiété de la communauté étudiante
- Désinformation et manipulation de l’information: une conférence le 15 février à l’UdeM
- Une délégation de l’UdeM à la COP 15
- Les tourbières deviendront des émettrices de carbone d’ici la fin du siècle
Consultez cette fiche sur :